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We demonstrate a new ab initio semiclassical technique for investigating tunneling effects. Using a semiclassical
approach, the method incorporates tunneling effects into first principles molecular dynamics. We apply the
method to the intramolecular proton transfer in malonaldehyde and find good agreement with the experimentally
measured tunneling splitting. This agreement suggests a wide applicability of the new method to proton transfer
and coupled electron-proton transfer processes.

Introduction

In molecules containing both hydrogen donor and acceptor
groups in close proximity, an intramolecular hydrogen bond is
formed and the hydrogen atom may tunnel between the donor
and acceptor groups. Malonaldehyde serves as a textbook
example for such intramolecular hydrogen bonding and the
theoretical interest in this molecule has been supplemented by
a series of spectroscopic studies.1-7 Most of the theoretical work
on malonaldehyde is based on approximate two-dimensional
potential energy surfaces,8-11 although Thompson and co-
workers have recently investigated a full-dimensionality model.12

Both the height and the width of the barrier through which
the proton tunnels often depend very strongly on the motion of
all the atoms in the molecule. Consequently, tunneling rates
can be extremely sensitive to the potential energy surface that
is employed, irrespective of the degree of sophistication of the
method that is used to predict the splitting. Thus, when
experimental data is available, one expects that tunneling
dynamics will provide a sensitive probe of potential energy
surfaces near the barrier region.

Proton transfer and coupled electron-proton transfer are
important in many biochemical processes, for example, glyco-
lysis and oxidative phosphorylation. There is therefore much
interest in simulating such reactions. However, there are two

main stumbling blocks in the molecular modeling of proton
transfer. The quantum mechanical nature of the nuclei must be
confronted to include zero-point and tunneling effects and at
the same time the potential energy surfaces must be capable of
describing bond rearrangement. The latter is often quite awkward
in the context of analytic empirical functions. The empirical
valence bond approach of Warshel and Weiss13 provides a
solution to this problem that has recently become particularly
popular in studies of the excess proton in water.14-16 The
primary difficulty is that all bond rearrangements which will
be allowed must be enumerated explicitly, leading to complica-
tions when studying proton transport. The dissociable water
potential of Stillinger and co-workers17-19 avoids this problem
and it has also seen recent use.20,21 However, the increased
flexibility comes at the cost of uncertain accuracy. An attractive
option is “on-the-fly” solution of the electronic Schro¨dinger
equation, sometimes called “direct dynamics.” Truhlar and co-
workers have investigated the use of semiempirical methods
for this purpose, but found that accurate results usually require
explicit re-parametrization for specific reactions.22 Molecule-
specific parametrization or fitting is avoided in ab initio
molecular dynamics.23-25 Several workers have applied ab initio
molecular dynamics to hydrogen-bonded systems, but these have
been restricted to either classical Newtonian dynamics26,27 or
equilibrium (imaginary time) quantum mechanics.28,29Over the
past few years, we have pioneered ab initio real-time quantum* Author to whom correspondence should be addressed.

© Copyright 1999 by the American Chemical Society VOLUME 103, NUMBER 31, AUGUST 5, 1999

10.1021/jp990904a CCC: $18.00 © 1999 American Chemical Society
Published on Web 07/20/1999



dynamics.30-36 We have emphasized the case of quantum effects
due to electronic nonadiabaticity, but have also shown that these
methods can be applied successfully to treat tunneling effects.37

Recently, the Voth group has also begun to pursue the goal of
ab initio real-time quantum dynamics.38

In this paper, we concentrate on a slightly less ambitious goal.
We do not insist on quantum nuclear dynamics, but instead use
a semiclassical formalism to describe the quantum mechanical
tunneling events, coupled with “on-the-fly” solution of the
electronic Schro¨dinger equation. The semiclassical method
used9,12,39bears a resemblance to surface-hopping40 procedures,
with the tunneling event described by trajectories instantaneously
hopping under the barrier from one turning point to another. It
has been improved somewhat by Keshavamurthy and Miller,41

but judging from the performance of the original method in two-
dimensional model problems,9 we saw no compelling reason
to go beyond the original, simpler method in this work. By
solving the electronic Schro¨dinger equation at each point in time,
during the propagation, the required potential energy surfaces
are generated “on-the-fly” and the rearrangement of the
hydrogen bond is accomplished smoothly (without any input
parameters). This ab initio semiclassical technique turns out to
be very accurate in the test case used here, where high-quality
experimental information is available. Because the semiclassical
formalism is much less costly than fully quantum dynamics,
there is considerable practical advantage to the method. The
work presented here is the first use of ab initio molecular
dynamics to evaluate tunneling rates.

Theory

The semiclassical treatment of the tunneling rate used in this
work has been presented previously,12,39 and we give only a
brief discussion here. The method is based on the procedure
suggested by Makri and Miller,9 and can be viewed as a classical
trajectory/WKB approach. The semiclassical/WKB expression
for the tunneling splitting in a one-dimensional double well is
given by42,43

whereV is the frequency of the oscillator at a total energyE,
andθ is the classical action integral through the barrier

The limits of the integral in eq 2 are the classical turning points
(at total energyE) on the two sides of the barrier. As discussed
in ref 9, one can express the tunneling splitting (∆E) in terms
of the time derivative of the averaged net tunneling amplitude

where

The bracket in eq 3 implies an ensemble average over the initial
vibrational phase. The times that a classical trajectory is at a
turning point along the tunneling directionx are denotedtn and
h(ê) is the usual step function:h(ê) ) 1 if ê > 0, andh(ê) )
0 if ê < 0.

Equations 1-4 provide the prescription for the semiclassical
approach: a classical trajectory is propagated and the magnitude

of the momentum of the tunneling particle along the tunneling
coordinate,x, is monitored. Each time that a classical turning
point is reached, the tunneling integral is computed using eq 2.
For each trajectory the net (i.e., cumulative) tunneling amplitude
is given by the sum of these instantaneous tunneling amplitudes
(eq 4) and the results are averaged over the initial phase. Thus,
in the semiclassical picture, tunneling is instantaneous in real
time and conserves the momentum of all the particles. This strict
sudden approximation poses a problem for symmetric double-
well systems for the following reason: when passing from one
well to the other the position of all the atoms should be
symmetrically reflected. However, within the sudden ap-
proximation, the positions of all atoms except the tunneling
particle are kept fixed during the tunneling “event.” To
overcome this difficulty, Thompson and co-workers12 suggested
evaluating only half of the integral, from the inner turning point
(x<) to a point xsym where rOH ) rO‚‚‚H. The result is then
doubled. This leads to a discontinuous derivative in the integrand
at xsym, and is thus not wholly satisfactory. However, it does
provide a workable solution whose accuracy may be similar to
that of the sudden approximation itself. Therefore, we adopt
this suggestion in this work.

A complete description of the semiclassical model requires
a specification of the tunneling path. The “optimal” choice of
this path has been the topic of many papers44-47 and a variety
of choices (e.g., least-action, minimum energy, and straight line
paths) have been investigated. In general, one expects the
tunneling path to be curved toward the transition state and the
choice of a simple straight line (in the full-dimensional
coordinate space) is an approximation whose accuracy will vary
from molecule to molecule. Nevertheless, since in the present
case of malonaldehyde there is no obvious choice for a curved
path, we have chosen the tunneling path to be a straight line
parallel to the equilibrium O-O distance vector. Other, more
sophisticated, choices may be the subject of future investigation.

Time-independent ab initio quantum mechanical studies on
malonaldehyde indicate that the Hartree-Fock (HF) approxima-
tion is inadequate. The predicted O‚‚‚H distance (1.88 Å), which
is clearly of crucial importance to the tunneling dynamics, is in
poor agreement with the value (1.68 Å) deduced from experi-
ment.5 Adding electron correlation effects via perturbation theory
(MP2) yields a structure48 that is in good agreement with
experiment (O‚‚‚H distance 1.69 Å) and a barrier height for
proton transfer of 3.6 kcal/mol. The “best” estimate for the
barrier is due to Barone and Adamo49 who, using the G2 method
and B3LYP/DZP geometries, predicted a barrier height of 4.3
kcal/mol. They compared post-HF and DFT methods and
concluded that, among the less demanding methods, the best
results are obtained by a hybrid DFT/HF approach. In particular,
the B3LYP method provides accurate structural parameters and
minimizes one of the serious drawbacks of DFT methodssthe
over-stabilization of structures in which a hydrogen atom is
shared between two electronegative atoms. In the following
simulations, we use the B3LYP/DFT method with double-ú
basis sets.50,51 The equilibrium and transition state (TS) struc-
tures at this level of theory are shown in Figure 1 as well as the
potential along the intrinsic reaction coordinate (IRC), computed
with Gaussian 98.52 The predicted theoretical equilibrium
geometry is compared with the experimental microwave struc-
ture of Wilson et al.2 (numbers in parentheses). In general the
agreement is quite good and in particular the O‚‚‚H distance is
within 0.04 Å of the experimental value. The tendency of DFT
methods to overestimate electron correlation leads to an
underestimation of the energy barrier for proton transfer. For

∆E ) 2pVe-θ (1)

θ ) 1
p
∫x<

x> x2m[V(x) - E]dx (2)

∆E ) 2p
d
dt

〈Snet(t)〉 (3)

Snet(t) ) ∑
n

h(t - tn)e
-θn (4)
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example, the BLYP and BP functionals predict energy barriers
of 1.0 and 0.4 kcal/mol, respectively.49 This effect is strongly
reduced when including exact exchange (B3LYP), but not
completely eliminated judging from the resulting barrier height
of 2.3 kcal/mol.

Results and Discussion

The tunneling splitting was calculated using eqs 1-4. A
modified version of the Jaguar53 code was employed to compute
the electronic structure and semiclassical dynamics. An en-
semble of 150 trajectories was propagated using a velocity Verlet
algorithm and a time step of 0.25 fs. At each point in time and
for each trajectory, the necessary potential energies and gradients
were obtained by solving the electronic Schro¨dinger equation.
The initial conditions were sampled as appropriate for the
molecule in the ground vibrational state. Zero-point energy was
deposited in each normal mode, and the phases were chosen
according to the usual quasi-classical procedure.54 To ensure
that this initial state remains approximately unchanged (i.e., zero-
point energy does not flow between modes and classical barrier
crossing does not occur) a short run time of 50 fs was used.
Within this time duration, approximately four tunneling events
were observed for each trajectory.

We have calculated the tunneling splitting (eq 3) from the
average net tunneling amplitude shown in Figure 2. The
calculated splitting, 21( 1 cm-1, is in excellent agreement with

the experimental value,2,6,7 21.6 cm-1. Although traces of the
steplike behavior of individual trajectories are present in Figure
2, these would disappear given a larger ensemble. To estimate
the accuracy of the calculation, we have (I) computed the
splitting using seven randomly chosen sub-ensembles of 80, 100,
and 120 trajectories and (II) fitted the data up to 35, 40, and 45
fs. Both procedures result in an error bar of(1 cm-1 and the
specific value of the splitting that we report is for the full 150
trajectories and an integration period of 40 fs.

The quantitative agreement between calculation and experi-
ment is somewhat surprising. Although the B3LYP method
provides quite accurate structural parameters (when compared
to the HF method and/or BLYP and BP functionals), it also
underestimates the barrier height for proton transfer (see Figure
1). Moreover, similar agreement (21.8 cm-1) has been reported
by Thompson and co-workers12 using a parametrized PES with
a much larger barrier height (10 kcal mol-1) and a very similar
width along the IRC. Since this previous work used the same
semiclassical treatment of the dynamics, the final agreement of
the tunneling splitting may be puzzling. However, the important
point to note is that the dominant factor in determining the
tunneling splitting isnot the barrier height along the IRC, but
an effective barrier height, i.e., the barrier experienced by the
trajectories that have a nonnegligible contribution to the
tunneling amplitude. This effective barrier height must be similar
in the B3LYP and parametrized PESs. (The effective barrier
width is also important. However, the width of the IRC in the
two PESs is similar. Hence, the effective widths are likely also
very similar.) As a measure for the height of the effective barrier
we have computed the distribution of barrier heights and the
product of this distribution with the average tunneling amplitude
(as a function of barrier height). The second distribution serves
as a measure for the effective barrier height (because it weights
each barrier height by its average tunneling probability). Since
the effective barrier height is a product of two functions: one
rapidly decreasing with energy (tunneling amplitude) and one
centered at∼27 kcal/mol (barrier heights), its magnitude (∼12
kcal/mol) is determined (as expected) by the low energy tail of
the distribution of barrier heights. Figure 3 suggests that the
relevant barrier height is actually 12-15 kcal/mol, much higher
than the barrier along the IRC.

Thompson and co-workers have pointed out that the effective

Figure 1. Energy profile (B3LYP) along the intrinsic reaction
coordinate for symmetric hydrogen transfer in malonaldehyde. The
theoretical equilibrium geometry (right inset) is compared with the
experimental structure of Wilson et al.2 (numbers in parentheses). The
predicted transition state structure lies 2.3 kcal/mol above the equilib-
rium geometry. All bond distances are in Å and the reaction coordinate
is expressed as a mass-weighted Cartesian displacement from the
transition state structure.

Figure 2. Average net tunneling amplitude as a function of time in
femtoseconds. Results are for an ensemble of 150 trajectories and the
splitting derived from this curve is 21( 1 cm-1, to be compared with
the experimental value2,6,7 of 21.6 cm-1.

Figure 3. Histogram plots of the distribution of barrier heights (black
boxes) and of the product of this distribution with the average tunneling
amplitude as a function of energy (gray boxes). (The barrier height is
defined as the difference in energy betweenx< andxsym.) Both were
computed by averaging over all the tunneling events (each trajectory
experienced approximately four turning points during the simulation
time and we propagated 150 trajectories). As discussed in the text, the
second distribution (gray boxes) serves as a measure for the barrier
height experienced by trajectories which successfully tunnel.
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barrier to proton transfer is reduced whenroo is contracted from
its equilibrium value, and they thus argue for an effective barrier
which is lower than that along the IRC. We have verified that
this correlation betweenroo and the effective barrier is also
observed on the B3LYP potential energy surface. However, the
dynamical simulations show an effective barrier that islarger
than the barrier along the IRC. Therefore, we have examined
the roo distances at configurations with high tunneling prob-
abilities. The results are shown in Figure 4, where we plot the
probability of reaching a turning point at a givenroo and this
probability weighted by the tunneling probability. As expected,
tunneling occurs preferentially at the smallestroo, but these are
alwaysexpandedrelative to the transition state (roo of the TS is
denoted with an arrow in Figure 4). Thus, the effective barrier
is higher than the barrier along the IRC simply because the
molecule does not visit configurations whereroo is similar to
that of the transition state. This is a reflection of the rigidity of
the heavy atom framework in the molecule, and may be quite
common for intramolecular proton transfer.

It is uncertain whether the excellent agreement with experi-
ment obtained here will carry over to proton transfer in other
molecules. We may benefit in part from a cancellation of
errorssthe straight-line tunneling path will tend to increase the
effective barrier height for each tunneling event while the
B3LYP method underestimates the potential energy in the barrier
region. Since it is not yet possible to carry out exact quantum
mechanical full-dimensional calculations for molecules of this
size, further application of the ab initio semiclassical tunneling
model where experimental data is available will be required to
determine its expected accuracy.

In summary, we have demonstrated the first dynamical
calculation of ab initio semiclassical tunneling rates, and applied
it to proton transfer in malonaldehyde. Proceeding entirely from
first-principles, we have obtained excellent agreement with the
experimentally measured tunneling splitting. This new method
provides a promising approach to study proton-transfer prob-
lems, which will be the subject of future investigations.
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